Aplicación de las nuevas tecnologías en la rehabilitación del lesionado medular
Resumen
Cáceres, S. et al. (2017): “Aplicación de las nuevas tecnologías en la rehabilitación del lesionado medular”. Revista Española de Discapacidad, 5 (I): 229-236.
Citas
Bronnikov, V. A. et al. (2016): «Evaluation of motor skills recovery in post-stroke patients in the process of complex rehabilitation with the use of robotic kinesiotherapy”. Zh Nevrol Psikhiatr Im S S Korsakova, 116 (9): 30-34.
Calabrò, R. S. et al. (2016): “Robotic gait rehabilitation and substitution devices in neurological disorders: where are we now?”. Neurol Sci, 37 (4): 503-514.
Cano de la Cuerda, R. (2016): “Frenkel: ¿un precursor de la neurorrehabilitación?”. Revista de neurología, 63 (2): 79-84.
Diez-Alegre, M. I. y Cano de la Cuerda, R. (2012): “Empleo de un video juego como herramienta terapéutica en adultos con parálisis cerebral tipo tetraparesia espástica. Estudio piloto”. Fisioterapia, 34 (1): 23-30.
Dimbwadyo-Terrer, I. et al. (2016): “Upper limb rehabilitation after spinal cord injury: a treatment based on a data glove and an immersive virtual reality environment”. Disabil Rehabil Assist Technol, 11 (6): 462-467.
Fasoli, S. E. et al. (2003): “Effects of robotic therapy on motor impairment and recovery in chronic stroke”. Arch Phys Med Rehabil, 84: 477-482.
Fazekas, G.et al. (2016): “New opportunities in neuro-rehabilitation: robot mediated therapy in conditions post central nervous system impairments”. Ideggyogy Sz, 69 (5-6): 148-154.
Ferreira dos Santos, L. et al. (2016): “Movement visualisation in virtual reality rehabilitation of the lower limb: a systematic review”. Biomed Eng Online, 15 (Suppl 3): 144.
Gil-Agudo, A. et al. (2016): “Interactive virtual feedback improves gait motor imagery after spinal cord injury: An exploratory study”. Restor Neurol Neurosci, 34 (2): 227-235.
Hamanami, K. et al. (2004): “Finding the optimal setting of inflated air pressure for a multi-cell air cushion for wheelchair patients with spinal cord injury”. Acta Med Okayama, 58 (1): 37- 44.
Han, E. Y. et al. (2016): “Robot-assisted gait training improves brachial-ankle pulse wave velocity and peak aerobic capacity in subacute stroke patients with totally dependent ambulation: Randomized controlled trial”. Medicine (Baltimore), 95 (41): e5078.
Hesse, S. et al. (2003): “Upper and lower extremity robotic devices for rehabilitation and for studying motor control”. Curr Opin Neurol, (6): 705-710.
Hilderley, A. J. et al. (2016): “Comparison of a robotic-assisted gait training program with a program of functional gait training for children with cerebral palsy: design and methods of a two group randomized controlled cross-over trial”. Springerplus, 5 (1): 1886.
Hussain, A. et al. (2016): “Self-Paced Reaching after Stroke: A Quantitative Assessment of Longitudinal and Directional Sensitivity Using the H-Man Planar Robot for Upper Limb Neurorehabilitation”. Front Neuroscience, 10: 477.
Institut Guttman (s. f.): Lesión medular (en línea). http://www.guttmann.com/es/treatment/lesion-medular, acceso 17 de febrero de 2017.
Klamroth-Marganska, V. et al. (2014): “Three-dimensional, task-specific robot therapy of the arm after stroke: a multicentre, parallel-group randomised trial”. Lancet Neurol, 13 (2): 159- 166.
Krishnan, V. et al. (2016): “Robotic-assisted locomotor training enhances ankle performance in adults with incomplete spinal cord injury”. J Rehabil Med, 48 (9): 781-786.
Lo, C. et al. (2016): “Functional Priorities in Persons with Spinal Cord Injury: Using Discrete Choice Experiments To Determine Preferences”. J Neurotrauma, 33 (21): 1958- 1968.
Louie, D. R et al. (2015): “Gait speed using powered robotic exoskeleton after spinal cord injury: a systematic review and correlational study”. J Neuroeng Rehabil, 12: 82.
Maggioni, S. et al. (2016): “Robot-aided assessment of lower extremity functions: a review”. J Neuroeng Rehabil, 13 (1): 72.
Pérez Seco, M. et al. (2014): “Virtual Reality in Rehabilitation”. Journal of Accessibility and Design for All, 4 (3): 223-237.
Roosink, M. et al. (2016): “Interactive virtual feedback improves gait motor imagery after spinal cord injury: An exploratory study”. Restor Neurol Neurosc, 34 (2): 227-235.
Soldevilla, A. et al. (2008): “Impacto social y económico de las úlceras por presión. Enfermería y Úlceras por presión: De la Reflexión sobre la Disciplina a las Evidencias en los Cuidados”. Grupo ICE – Investigação Científica em Enfermagem, 275-297.
Stillman, M. D. et al. (2017): “Complications of Spinal Cord Injury Over the First Year After Discharge from Inpatient Rehabilitation”. Arch Phys Med Rehabil.
Vasilchenko, E. et al. (2016): “A descriptive study on the functioning profile of patients with spinal cord injury in a rehabilitation center in Russia”. Spinal Cord, 55 (5): 489-496.
Vesia, M. et al. (2008): “Correlations of selected psychomotor and visuomotor tests with initial dynavision performance”. Perceptual and Motor Skills, 107 (1): 14-20.
Waldner, A. et al. (2009): “Transfer of scientific concepts to clinical practice: recent robot-assisted training studies”. Funct Neurol, 24 (4): 173-177
Wells, A. J. et al. (2014): “Reliability of the Dynavision™ D2 for Assessing Reaction Time Performance”. J Sports Sci Med, 13 (1): 145–150.
Yang, H. E. et al. (2016): «Structural and functional improvements due to robot-assisted gait training in the stroke-injured brain”. Neuroscience letters, 637: 114-119.
Zárate-Kalfópulos, B. et al. (2016): “Demographic and clinical characteristics of patients with spinal cord injury: a single hospital-based study”. Spinal Cord, 54 (11): 1016-1019.
Como revista de acceso abierto, el acceso a los contenidos de la revista tendrá carácter gratuito y los derechos de propiedad están sujetos a una licencia Creative Commons. Más concretamente, la revista estará bajo la licencia ‘Reconocimiento - NoComercial – Sin obra derivada (by-nc-nd’). Esta licencia permite el uso gratuito de los contenidos, pero no permite un uso comercial de la obra original ni la generación de obras derivadas.